Приветствую Вас, Гость
Главная » Статьи » Новости города

Высокотемпературные Металлопластиковые Трубы Киев
высокотемпературные металлопластиковые трубы киев

Этот многообразный металлопластик

Дмитрий Попов

О пластиковых и металлопластиковых трубопроводах в последние 15–20 лет написано множество статей и обзоров. По мере роста объемов реализации пластиковых труб росло и количество тематических материалов в прессе и Интернете, причем каждый автор стремился убедительно доказать превосходство того или иного материала, в зависимости от целей автора.

У компании – продавца труб из сшитого полиэтилена этот товар находится вне конкуренции. Графики, отражающие объем реализации в Европе, мистическим образом показывают резкий рост потребления в развитых странах. С точки зрения продавца труб из поливинилхлорида, изделия из ПВХ обладают непревзойденными качествами, до которых сшитому полиэтилену и полипропилену еще расти и расти. Вот и опыт производства этих труб в США показывает, что очень уж они востребованные. Факты же тотальной замены данных труб через 15–20 лет эксплуатации в целых жилых кварталах в некоторых городах Северной Америки почему-то остаются за рамками исследований таких поставщиков. Если зайти на специализированные сантехнические форумы в Интернете, то обязательно найдется большое количество сообщений, в которых действительно стоящим трубным материалом будет названа медь, и никакой из пластиков с ней не сравнится. В последнее время единственным материалом, информация о котором подается взвешенно и сдержанно, является полипропилен. Наверное, потому, что его используют повсеместно.

Мало у кого получится действительно объективное сравнение пластиковых трубопроводных материалов. В рамках данной статьи мы не будем ставить таких глобальных целей, а определимся в категориальном аппарате и проанализируем некоторые тенденции и новинки рынка металлопластиковых труб.

Что такое металлопластик. В конце 90-х гг. на данный вопрос любой монтажник или специалист ответил бы, что это композитная пятислойная труба, содержащая два слоя сшитого полиэтилена, два слоя адгезива (клея) и слой алюминия посередине. PEXb-AL-PEXb – вот обозначение самой распространенной металлопластиковой трубы того времени. В России на рубеже веков популярными стали многослойные трубы из сшитого полиэтилена под марками Henco и Valtec – в основном из-за того, что они появились на рынке первыми. Эти бренды занимают разные качественные и ценовые категории, поэтому напрямую не конкурируют друг с другом. Henco – это труба из полиэтилена, сшитого методом «С» (электронно-лучевой метод), имеющая наибольшую возможную толщину слоя алюминия – 0,4 мм (для трубы диаметром 16 мм), а также качественный состав клеевых слоев. Valtec – труба из полиэтилена, сшитого методом «B» (с использованием пероксидов), с толщиной слоя алюминия 0,2 мм (для трубы диаметром 16 мм).

Сейчас ситуация несколько иная. Кроме сшитого полиэтилена, трубы с использованием металла изготавливаются из обыкновенного полиэтилена низкого давления (ПНД), из температуростойкого полиэтилена PERT, из полипропилена и т. д. Очерчивая круг вопросов, которые мы осветим сегодня, хотелось бы сразу исключить полипропилен. Армированный алюминием полипропилен (PPR-AL-PPR) в профессиональном сообществе обычно так и называется (синонимами также являются стабилизированный PP-R, Stabi). Если покупатель попросит в магазине металлопластиковую (металлополимерную) трубу, ему не предложат купить PPR-AL-PPR, поэтому и мы затрагивать эксплуатационные особенности труб из данного материала не будем.

Возвращаясь к истокам

Существует несколько поколений труб из полиэтилена низкого давления: от первого до четвертого. Трубы первого поколения изготавливались из сырья ПЭ63. Цифра обозначает значение показателя MRS (минимальной длительной прочности, измеряется в мегапаскалях – МПа). Чем выше значение MRS, тем больше будет прочность материала через 50 лет его непрерывного использования в холодной воде (20 °С). Трубы четвертого поколения имеют значение MRS = 12,5 МПа. Более высокая прочность материала ведет к тому, что для достижения одного и того же рабочего значения в трубах разных поколений можно закладывать разную толщину стенки. Чем старше поколение, тем тоньше может быть стенка, а значит, меньше самого материала использовано при изготовлении.

Нас в большей степени интересует не ПНД, а его «продвинутая» разновидность – PEX (сшитый полиэтилен). Буква «Х» как раз обозначает наличие «сшивки» в макромолекулах полиэтилена. «Сшивка» полиэтилена приводит к образованию трехмерной сетки на молекулярном уровне, что в свою очередь ведет к созданию качественно иного материала для производства труб, который уже не боится высоких температур и обладает рядом отличительных свойств.

Три основных метода «сшивки» полиэтилена

Метод «А» (метод Энгеля) (PEXa) является химическим, для образования дополнительных связей между молекулами полиэтилена используются пероксиды. Это первый из изобретенных методов сшивки полиэтиленов.

Метод «В» (PEXb) также является химическим способом образования поперечных связей между молекулами полиэтилена: при производстве используются силаниды. После экструзии трубу погружают в специальную горячую ванну с химическим раствором, а потом промывают.

Метод «С» (PEXс) – физический: молекулы полиэтилена подвергаются облучению специальной электронной пушкой. Сшивка, как и при методе «В», происходит после экструзии трубы.

Если при методе «В» труба контактирует с химическим реагентом и снаружи, и изнутри, то у труб, сшитых по методу «С», бомбардировка электронами происходит только на наружной поверхности. Это ведет к ограничению размеров труб PEXc: их диаметр обычно не превышает 50 мм. Окончательная сшивка труб PEXb и PEXс происходит через пару месяцев после их изготовления.

Проверка на прочность

Возникает резонный вопрос: с помощью какого метода сшивки получаются трубы, более долговечные и надежные в эксплуатации? Мы не дадим однозначного ответа, но предоставим пищу для размышлений. В соответствии с DIN 16892 и ГОСТ 52134-2003 (немецкий и российский государственные стандарты на трубопроводную продукцию из пластиков) степень сшивки труб, произведенных по методу «А», должна быть не менее 70%, по методу «В» – не менее 65%, по методу «С» – не менее 60%.

www.pexassociation.net. Сотрудники лаборатории компании изучили физические свойства образцов трубопроводов из сшитого полиэтилена PEXа и PEXb одинакового диаметра с одинаковой толщиной стенок, которые были помещены в ванны с горячей водой для проведения испытаний под давлением.

На номограмме представлены несколько релаксационных графиков. На них отражено, как с течением времени (ось абсцисс) снижается эталонное тангенциальное напряжение (ось ординат) в стенке трубы. Избыточное давление, которое выдерживает полимерная труба, напрямую зависит от этого тангенциального напряжения.

Таким образом, чем выше на номограмме линия или отдельное значение, тем больше тангенциальное напряжение в стенке трубы, и тем большее избыточное давление может выдержать труба.

Приведенная номограмма объединяет несколько материалов: DIN 16892 (немецкий стандарт качества производства труб из PEXa) – сплошные линии, и DIN 16833 (немецкий стандарт качества производства труб из PE-RT) – пунктирные линии. К пунктирным линиям обратимся позже, а вот сплошные линии разных цветов и точки круглой и квадратной формы мы рассмотрим. Синий цвет линии и точек говорит нам о требованиях немецкого стандарта к трубам из PEXa и фактических значениях образцов труб. Синие точки круглой формы, а также красная круглая точка на номограмме показывают, какими были напряжения на момент проведения эксперимента в стенках труб, которые простояли под давлением в воде 95 и 80 °С соответственно порядка 27 лет. Тот факт, что трубы из PEXa простояли такой длительный срок при температуре 95 °С – уже достижение, поскольку нормативно срок службы при том давлении, которое было задано, не должен был превышать 5 лет.

Опыт показал, что чем больше процент сшивки молекул между собой, тем меньшее давление при прочих равных условиях выдерживает труба. Исследование не показывает, какой именно процент сшивки молекул является оптимальным, но, по крайней мере, сшивка в 70% лучше сшивки в 90%.

Итоговые результаты исследования приведены в таблице.

Образцы трубы, изготовленной из PEXb, обозначенные на номограмме синими квадратными точками, простояли в кипятке 13,8 и 17 лет соответственно. Поэтому сравнивать их формально с образцами, изготовленными из PEXa, некорректно. Хотя высота их расположения на номограмме уже говорит сама за себя. А если вспомнить требуемую степень сшивки согласно государственным стандартам, то все становится на свои места: трубы из PEXc среднестатистически должны иметь более высокое тангенциальное напряжение в стенке. Выводы исследования немецких специалистов не говорят нам об этом напрямую, поскольку PEXc является самым «молодым» способом сшивки полиэтилена. Однако косвенно этот факт подтверждается.

Качество склейки

Качество металлополимерной трубы PEX-AL-PEX определяется не только прочностью сшитого полиэтилена, но и качеством клеевого соединения. Также важно, какая алюминиевая фольга применяется для армирования трубы и каким образом металл фиксируется в теле трубы. Например, у качественной немецкой или бельгийской трубы диаметром 16 мм толщина алюминия составляет 0,4 мм. Фольга в таких трубах сваривается встык лазером (так называемое бесшовное соединение), качество шва контролируется электронным способом. В более дешевых металлополимерных трубах фольга соединяется внахлест, толщина алюминиевого слоя составляет 0,2 мм (для трубы диаметром 16 мм). Соединение алюминия внахлест ультразвуком (рис. А) и соединение лазером встык (рис. В) являются наиболее популярными методами. Соединение фольги вольфрамовым стержнем встык (рис. Б) практически не используется в настоящее время. Какой из методов соединения фольги при прочих равных условиях является более технологичным – видно из иллюстраций.

Соединение фольги внахлест влечет за собой искажение формы проходного сечения трубы, что особенно заметно на больших диаметрах. Кроме того, при температурных нагрузках и тепловом расширении такой способ соединения фольги может привести к деформации слоев сшитого полиэтилена. По прочностным характеристикам оба способа соединения равнозначны, но если края алюминия вообще никак не соединяются между собой, как это бывает в продукции некоторых производителей Юго-Восточной Азии, то в ходе эксплуатации это приводит к печальным последствиям буквально в течение одного-двух лет.

Очень важно качество клея, который используется для соединения слоев полиэтилена и алюминия. Именно на клеевое соединение приходится основная нагрузка при тепловых удлинениях. Алюминий удлиняется существенно меньше, нежели чем сшитый полиэтилен, в этом и состоит его основная функция, а клеевой адгезионный слой – главное связующее звено структуры трубы.

Другие материалы

Кроме сшитого различными методами полиэтилена, металлопластиковые трубы могут производиться из высокотемпературного полиэтилена PERT (Polyethylene of Raised Temperature Resistance). Этот вид полиэтилена уже перестал быть новинкой инженерной сантехники в РФ, впервые он появился на рынке в начале 2000-х. Отличие полиэтилена PERT от PEX в том, что макромолекулы PERT не «сшиты» друг с другом, а имеют разветвленные боковые октеновые связи, которыми макромолекулы «переплетаются» друг с другом. Эксплуатационные показатели PERT лишь немного не дотягивают до показателей любой PEX-трубы. Маркетинговое исследование немецкого института KWD, посвященное рынку водоснабжения и отопления в странах Евросоюза за 2009 г. засвидетельствовало 71%-й рост потребления труб PERT и PERT/AL в 2009 г. по сравнению с 2005-м (почти 500 млн м к 280 млн м). Причем за тот же период потребление труб PEX и PEX/AL снизилось на 11% (с 480 млн м до 428 млн м).

Возвращаясь к номограмме, мы увидим, что пунктирной линией обозначены нормативные значения напряжения в стенке трубы PERT в зависимости от температуры транспортируемой среды. По этим пунктирным графикам мы видим, что они находятся ниже графиков PEXa того же цвета, а также имеют сильный излом, который свидетельствует об ухудшении физических свойств трубы с течением времени на высоких температурах. Несмотря на то что PERT называется высокотемпературным полиэтиленом, сфера его применения – это холодное и горячее водоснабжение и системы «теплый пол». Именно поэтому многие композитные трубы PERT/AL имеют небольшую толщину алюминия, что позволяет достаточно легко изгибать их при монтаже напольного отопления. В настоящий момент появился второй тип PERT, который отличается более высокими эксплуатационными характеристиками. В чем же причина успеха PERT – как в Европе, так и в России? Ответ простой – цена. Как PEXb стоит дешевле своих собратьев, произведенных методами «А» и «С», так и PERT дешевле в производстве, чем PEXb.

Сейчас, в основном благодаря производителям из Поднебесной, на рынок выброшено большое количество разнообразных сочетаний различных пластиков в составе металлополимерных труб. Кроме уже известных нам PEXa-AL-PEXa, PEXb-AL-PEXb, PEXc-AL-PEXc, PEXc-AL-PEXb, PEXb-AL-PE(HD), PERT-AL-PERT, PERT-AL-PE(HD) существуют еще PE-AL-PE, PERT-AL-PPR, PE-AL-PPR, Steel-PPR и другие, где PE(HD) – это полиэтилен высокой плотности, PPR – это полипропилен, а Steel – это сталь, которую продавцы почему-то рекламируют как нержавеющую, хотя труба через 2 года демонстрирует обратное.

Рынок металлопластиковых труб в России остается довольно емким и пестрым. Разобраться во всем многообразии предлагаемых вариантов все сложнее. Чуть ли не единственной защитой от некачественного товара стал бренд, но намного важнее знать, кто и где фактически производит трубу, а не чей товарный знак на ней указан. Кроме того, на нашем рынке имеются производители, чья продукция уже прошла испытания временем и отлично себя проявила, поэтому остается лишь выбрать нужную модель и найти этот товар по приемлемой цене.

Дмитрий Попов, эксперт компании «Эгопласт»

Рис.1. Сравнительные показатели температурного удлинения и кислородопроницаемости

Как видно из Таб1 и Рис.1 все однослойные трубы имеют самую высокую степень кислородопроницаемости.

Абсолютной кислородонепроницаемостью обладают только металлополимерные трубы PERT-Al-PERT, PPR-Al-PPR.

В многослойных трубах с барьерным слоем из этилен-винилового спирта PEX-EVON-PE показатель диффузии кислорода имеет сравнительно невысокое значение, но показатель температурного расширения соответствует однослойным трубам.

В настоящий момент только многослойные трубы PERT-Al-PERT и PEX-EVON-PE соответствует ГОСТ Р 53603-2009 Трубы напорные многослойные для систем водоснабжения и отопления .

Модная новинка - полипропиленовые трубы армированные стекловолокном PPR/PPR-FG/PPR (PPR-GF-PPR) приблизилась по показателю температурного расширения к металлопластиковым трубам, но высокая кислородопроницаемость делает их непригодными для систем отопления, тем самым крайне сужается сегмент их потребления.

Теперь разобравшись с показателями кислородопроницаемости наиболее популярных полимерных трубопроводов систем отопления и водоснабжения обратимся к негативным последствиям для замкнутых систем отопления, которые порождает высокая диффузия кислорода. Для высокотемпературных и низкотемпературных систем отопления последствия кислородопроницаемости различные.

ДИФФУЗИЯ КИСЛОРОДА В ВЫСОКОТЕМПЕРАТУРНЫХ СИСТЕМАХ РАДИАТОРНОГО ОТОПЛЕНИЯ

Влияние диффузии кислорода в полимерных трубах на замкнутую высокотемпературную систему (радиаторное отопление) хорошо известно. Проникающий через стенки трубы кислород насыщает разогретый до высокой температуры теплоноситель пузырьками кислорода, порождая кавитационные процессы в насосах (Рис.2), вентилях (Рис.3), во всех других металлических элементах трубопроводной системы:

Рис.2. Разрушение водяного насоса, и скан поверхности ротора насоса (Сканирующий мультмикроском СММ-2000) в результате насыщения теплоносителя кислородом.

Рис.3. Разрушение вентиля в результате насыщения теплоносителя кислородом.

Процессы кавитации несколько усиливается образованием слабых кислот в теплоносителе в результате повышения концентрации того же кислорода.

Высокая кислородопроницаемость полимерных труб может привести к разрушению металлических узлов в довольно короткие сроки: 3-5 лет.

Благодаря достижениям производителей полимеров современные полимерный трубы обрели высокую долговечность (50-100 лет), но применение полимерных труб с высокой диффузией кислорода в высокотемпературных системах отопления сокращает срок службы трубопроводной системы в целом в несколько раз.

Трубы с высокой диффузией кислорода, применение которых недопустимо в высокотемпературных замкнутых системах отопления

  • PEX (Однослойные трубы из сшитого полиэтилена)
  • PPR (Однослойные трубы из полипропилена)
  • PPR-FG-PPR (Полипропиленовые трубы армированные стекловолокном PPR-GF-PPR, PPR-GF)

ДИФФУЗИЯ КИСЛОРОДА В ЗАМКНУТЫХ НИЗКОТЕМПЕРАТУРНЫХ СИСТЕМАХ ОТОПЛЕНИЯ (ТЕПЛЫЕ ПОЛЫ, ПАНЕЛЬНОЕ ОТОПЛЕНИЕ)

До недавнего времени считалось, что диффузия кислорода создает проблемы только в высокотемпературных системах, но в конце года авторитетная шведская лаборатория EXOVA (ранее Bodycote Polymer) завершила 12-ти летние испытания полимерных труб в замкнутых низкотемпературных системах отопления (теплых полах, панельном отоплении). Результаты оказались несколько неожиданными, Рис. 4.

Рис.4. Заиливание стенок однослойной трубы в низкотемпературной системе отопления (Exova, )

В низкотемпературных замкнутых системах отопления в кислородопроницаемых трубах (PEX, PPR, PPR-FG-PPR) проникающий через стенки трубы в теплоноситель кислород провоцирует развитие аэробных микроорганизмов, в результате стенки трубы заиливаются продуктами жизнедеятельности аэробных бактерий, и трубопроводная система со временем выходит их строя, теряя свою пропускную способность.

ОБЛАСТИ ПРИМЕНИЯ ПОЛИМЕРНЫХ ТРУБ С УЧЕТОМ ИХ КИСЛОРОДОПРОНИЦАЕМОСТИ

Термостойкость современных трубных полимеров уже давно достигла необходимого для систем отопления и горячего водоснабжения уровня 90. 95 С. При этом долговечность большинства современных полимерных труб перешагнула 50 летный уровень, а у труб из PE-RT полиэтилена и 100 летний.

Благодаря композитным конструкциям с армированием алюминием или стекловолокном удалось достичь высокой термической стабильности труб, тем самым отпала необходимость установки температурных компенсаторов в системах отопления и горячего водоснабжения, что в свою очередь снизило затраты на прокладку трубопроводов.

Таким образом основным критерием выбора типа полимерных труб для различных систем отопления и водоснабжения становится их кислородопроницаемость, Рис.5.

Рис.5. Области применения полимерных труб с учетом диффузии кислорода и термической стабильности

Безусловно, проблемы диффузии кислорода характерны для замкнутых систем отопления. В системах водоснабжения требования к трубопроводам значительно ниже.

Холодное водоснабжение: Применяются практически все известные типы однослойных и многослойных труб в том числе ПНД трубы.

Горячее водоснабжение: В Российской практике применяют самые разнообразные трубы, но с учетом требований к термической стабильности, предпочтительны многослойные трубопроводы: металлопластиковые на основе полиэтилена и полипропилена (PE-RT-Al-PERT, PPR-Al-PPR), или полипропиленовые трубы армированные стекловолокном (PPR-FG-PPR, PPR-GF).

Высокотемпературные замкнутые системы отопления: К сожалению, в Российской практике умудряются использовать самые различные трубопроводы. Однако, надежность системы могут обеспечить только термически стабильные кислородонепроницаемые трубы: металлопластиковые PERT-AL-PERT и металлопластиковые трубы PPR-Al-PPR (чаще их называют полипропиленовые трубы армированные алюминием, например PPR-Al-PPR OXY-Plus).

Причем, применение требующих зачистки наружного слоя полипропиленовые трубы армированные перфорированной алюминиевой фольгой (PPR-Staby) недопустимо. Алюминиевая фольга в этих трубах не имеет прочного адгезионного соединения со слоями полипропилена, что не обеспечивает необходимой термической стабильности, и приводит к быстрому расслоению и вздутию трубы. Дырчатая перфорация фольги труб PPR-Staby, призванная обеспечить сцепление наружного и внутреннего слоя полипропилена, является источником диффузии кислорода.

Низкотемпературные замкнутые системы отопления: Низкотемпературные системы наиболее развивающийся и самый перспективный сегмент потребления полимерных труб. Именно в виде низкотемпературных систем реализуются современные энергоэффективные системы отопления и кондиционирования: это теплые полы, панельное отопление и кондиционирования, системы использования геотермального тепла, теплообменники тепловых насосов. Долговечность низкотемпературных систем могут обеспечить только трубы с низкой диффузией кислорода. металлопластиковые трубы PERT-Al-PERT и многослойные трубы с барьерным слоем, например, PEX-EVON-PE.

В настоящее время металлопластиковые трубы в этой области наиболее предпочтительны - кроме абсолютной кислородопроницаемости, алюминиевый слой обеспечивает им дополнительное преимущество - они обладаю памятью формы, т.е. не разгибаются после изгиба. Однослойные трубы и трубы с полимерным барьерным слоем форму не держат, и это создает определенные трудности при монтаже.

Стоит обратить внимание, что в низкотемпературных системах используются гибкие трубы. т.к. по сути, эти системы представляют собой теплообменные змеевики. Поэтому жесткие кислородонепроницаемые полипропиленовые трубы PPR-Al-PPR в низкотемпературных системах не применяются. Трубы выполнение в размерном ряду SDR-6 абсолютно не сгибаемы, трубы размерного ряда по ГОСТ Р 53603-2009 трудносгибаемы. Кстати, переход европейских стран на энергосберегающие низкотемпературные системы отопления и кондиционирования сильно сократил в последние годы потребление полипропиленовых труб в Европе. ( Подробнее. )

ПЕРСПЕКТИВЫ ПРИМЕНИЯ ПОЛИМЕРНЫХ ТРУБ

На рынке бытует мнение, что двигателем развития полимерных труб является многоэтажное строительство, однако это не совсем верно. в году 43% всего нового жилищного строительства РФ составляло малоэтажное строительство, в южных регионах доля малоэтажного строительства превышала 70%. По прогнозам Министерства регионального развития в 2020 году доля малоэтажного строительства превысит 80% всего жилищного строительства. Объем потребления труб малого диаметра (до 110 мм.) в 2020 году превысит 1,3 млрд. метров. (Подробнее. )

Безусловно, кроме технических характеристик перспективность той или иной трубопроводной системы определяется размерами сегментов ее применения. Оценим размеры сегментов на примере строительства типичного коттеджного поселка, Рис.6, 7.

Рис.6. Коттеджный поселок с площадью строений 45 338 кв.м.

Рис.7. Структура протяженности полимерных трубопроводов по назначению в типичном коттеджном поселке

Вышеприведенный рисунок наглядно демонстрирует значимость выбора трубопроводной системы с учетом кислородопроницаемости. 78% полимерных труб в малоэтажном строительстве должны обладать низкой диффузией кислорода. Причем, 50% это гибкие кислородонепроницаемые трубы типа PERT-Al-PERT, 28% кислородонепроницаемые трубы типа PERT-Al-PERT или PPR-Al-PPR OXY Plus, и только 22% трубопроводной системы может быть выполнена или однослойными трубами (PEX, PPR) или полипропиленовыми трубами армированными стекловолокном (PPR-FG-PPR, PPR-GF).

Перераспределение жилищного строительства в пользу малоэтажного строительства переносит проблему энергосбережения из государственной в личную, и поэтому переход на энергоэффективные системы отопления и кондиционирования мы, потребители, будем осуществлять сами. А необходимость этого вполне понятна. Традиционные системы радиаторного отопления неэффективны.

Опыт Европейских стран уже давно осуществляющих переход на энергосберегающие системы показателен, жилые здания в странах со схожими с Россией климатическими условиями потребляют тепла более чем 2 раза меньше чем российские, Рис. 8.

. Рис.8. Потребление тепла жилыми зданиями в странах со сравнивыми климатическими условиями

Для российских потребителей энергосбережение то-же становится крайне актуальн ой проблемой. Согласно официального прогноза Министерства экономического развития РФ на -2030 г.г. цены на газ в 2020 году вырастут более чем в полтора раза по сравнению с нынешним , а к 2030 году почти в два раза. Электроэнергия подоражает в 2,1 раза в 2020 г. и в 2,78 раза в 2030 г. по сравнению с , Рис. 9.

Рис.9. Рост цен на электроэнергию и газ, в % к г.

Это можно считать оптимистичным прогнозом. В действительности, вероятно, рост будет значительно выше - обычно министерства занижают неудобные данные.

Энергосбережение может кардинально изменить рынок полимерных труб для систем водоснабжения и отопления. Например, структура применения полимерных труб в вышеприведенном коттеджном поселке, оснащенном энергоэффективными системами напольного отопления и кондиционирования, системами использования геотермального тепла (тепловыми насосами) существенно меняется, Рис.10.

Рис.10. Структура протяженности полимерных трубопроводов по назначению в коттеджном поселке оснащенном энергоэффективными системами панельного отопления и кондиционирования, и системами использования геотермального тепла

Переход на энергосберегающие системы снизит затраты на содержание жилых домов, но обернется для потребителей увеличением первоначальных затрат на строительство. Это в свою очередь, сделает процесс выбора трубопроводной системы более вдумчивым. Для того, что бы подорожавшая система отопления и водоснабжения не стала постоянной головной болью при выборе труб будет необходимо учитывать все факторы влияющие на надежность системы: термостойкость, термостабильность, кислородопроницаемость, и разумеется, репутацию производителя.

Источники: http://plastinfo.ru/information/articles/340/, http://www.meto.ru/analiz/publ_17.htm

Категория: Новости города | Добавил: kiev-44 (20.08.2015)
Просмотров: 772 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar